13C-CP-MAS NMR and ⁵⁷Fe-Moessbauer Spectroscopic Studies of the Reaction Products of Ferrocene Derivatives with Mercury(II) Halides

Masanobu WATANABE, Yuichi MASUDA, Izumi MOTOYAMA, and Hirotoshi SANO*

Department of Chemistry, Faculty of Science, Tokyo Metropolitan

University, Fukasawa, Setagaya-ku, Tokyo 158

Adducts of ferrocene, biferrocene, and [2]ferrocenophane with ${\rm HgX}_2$ (X = Cl, Br, I) were studied by means of high resolution solid state ${}^{13}{\rm C-NMR}$ and ${}^{57}{\rm Fe-Moessbauer}$ spectroscopies. Large low-field shifts found in the ${}^{13}{\rm C-CP-MAS}$ NMR and large quadrupole splitting (Q. S.) values in the ${}^{57}{\rm Fe-Moessbauer}$ spectroscopies suggest the presence of a direct chemical bonding between the Fe and Hg atoms.

It has recently been shown in our previous reports that [2]ferrocenophane derivatives react with some Lewis acids, such as ${\rm SnCl_4}$, ${\rm HgCl_2}$, ${\rm CdCl_2}$, and ${\rm I_2}$, giving stable adducts containing a chemical bond between the Fe and Lewis acid atoms (${\rm Hg^{2+}}$, ${\rm Sn^{4+}}$, ${\rm Cd^{2+}}$, and ${\rm I^+}$). Although all the adducts are less soluble in organic solvents, 1,1,2,2-tetramethyl[2]ferrocenophane-2 ${\rm I_2}$ is well soluble in some organic solvents, such as acetonitrile and dichloromethane, and gives a single crystal. X-Ray diffraction study of the ${\rm I_2}$ adduct shows that the Fe atoms squeezed out of the tilted cyclopentadienyl (Cp) structure have I atoms at a short distance (2.675 Å), 4) which is much smaller than the sum of the van der Waals radii of the Fe and I atoms. All attempts to obtain single crystals of the other adducts have so far been unsuccessful.

Recently, improved sensitivity and resolution in cross-polarization (CP), dipolar decoupling and magic angle spinning (MAS) techniques have made it possible to obtain a high-resolution $^{13}\text{C-CP-MAS}$ NMR spectrum even in the solid state. $^{5-8}$) The present study was planned to clarify the structure of some ferrocene derivatives' adducts with HgCl₂, by obtaining information about the chemical state of carbon atoms by means of high-resolution $^{13}\text{C-CP-MAS}$ NMR spectroscopy.

The reaction products of ferrocene, $^{9)}$ binuclear ferrocenes, $^{10)}$ and [2]ferrocenophane $^{1)}$ with HgCl₂ were prepared by the methods reported previously. 13 C-NMR spectra were obtained under the same conditions as in the case of a previous

report. 11) Chemical shifts were measured with respect to external adamantane and were converted to the shifts from TMS. 1 H- and 13 C-NMR spectra in solution were measured by using a JEOL FX-200 spectrometer at 200.0 and 50.1 MHz, respectively.

Although ferrocene gives only an unstable HgCl_2 adduct in the reaction with HgCl_2 in ether, biferrocene and [2]ferrocenophane give stable HgCl_2 adducts. Based on the results of $^{57}\mathrm{Fe-Moessbauer}$ spectroscopic studies, the Q. S. values of the starting metallocenes are found to be 2.41, 2.33, and 2.41 mm s⁻¹ for ferrocene, biferrocene, and [2]ferrocenophane, respectively, whereas large Q. S. values are found for the HgCl_2 adducts (3.09, 2.93, and 3.29 mm s⁻¹, for ferrocene-7 HgCl_2 , 12) biferrocene-2 HgCl_2 10, and [2]ferrocenophane-3 HgCl_2 2, respectively, all at 78 K).

The ¹³C-CP-MAS spectra of ferrocene (a) and its -7HgCl₂ adduct (b) consist of a singlet, as shown in Fig. 1. The chemical shift value of the Cp-ring carbon signals in ferrocene is found to be 69.79 ppm, while the value of the HgCl₂ adduct (79.71 ppm) is quite different. Similar observation is also obtained for ruthenocene (73.20 ppm) and its -3HgCl₂ adduct (81.20 ppm), ¹¹⁾ in which chemical bond formation (Ru-Hg) was found by means of X-ray diffraction study. ¹³⁾ The facts that a relatively large low-field shift (9.92 ppm) and a large Q. S. value are found for the HgCl₂ adduct, indicate the direct Hg-Fe bond formation in the adduct.

Similar low-field shifts are also observed for the HgCl2 adduct of biferrocene. The ¹³C-CP-MAS spectra of biferrocene (c) and its -2HgCl₂ adduct (d) are shown in Fig. 1 together with the high resolution ¹³C-NMR spectrum of biferrocene in CDCl3 solution (e). The ¹³C chemical shift values of the biferrocene in CDCl₃ solution are found to be 83.9(C_1), 69.2(C_5H_5), 67.6($C_{3.4}$), and 66.4(C2.5) ppm. The assignment of the carbon signals was carried out by using the selective protone decoupling experiment. The ¹³C chemical shift values of the biferrocene in solid are found to be $84.77(C_1)$, $70.66(C_5H_5)$, $67.06(C_{3.4} \text{ and } C_{2.5}) \text{ ppm.}$ The broader 13C-CP-MAS NMR spectrum of the HgCl₂ adduct, however, cannot be resolved into each carbon signal. The ¹³C chemical shift values of the HgCl₂ adduct are found to be $79.71(C_5H_5)$, $71.35(C_{3.4}$ and $C_{2.5}$) ppm. The peak of C_1 is not well resolved, being superimposed in the main C_5H_5 -ring signal. The large lowfield shift of the main C_5H_5 -ring signal (9.05 ppm) is similar to that of ferrocene-7HgCl₂ (9.92 ppm).

Fig. 1. $^{13}\text{C-CP-MAS}$ NMR spectra of ferrocene (a), its $^{-7}\text{HgCl}_2$ adduct (b), biferrocene (c), and its $^{-2}\text{HgCl}_2$ adduct (d) together with $^{13}\text{C-NMR}$ spectrum of biferrocene in CDCl $_3$ solution (e).

* Stands for spinning side bands.

shows that there is also direct bond formation between the Fe and Hg atoms in the biferrocene-2HgCl $_2$ adduct. The result of $^{13}\text{C-CP-MAS}$ NMR spectroscopy corresponds to that of the $^{57}\text{Fe-Moessbauer}$ study.

[2]Ferrocenophane reacts with HgX_2 (X = Cl, Br, I) in ether or ethanol giving stable adducts. Figure 2 shows the ^{13}C -CP-MAS NMR spectra of the [2]ferrocenophane (a) its $_{-3}HgCl_{-}$ (b) $_{-2}$ 5 $_{-2}HgBr_{-}$ (c) and

(a), its -3HgCl₂ (b), -2.5HgBr₂ (c), and -2.2HgI2 (d) adducts together with high resolution ¹³C-NMR spectrum of the [2]ferrocenophane in $CDCl_3$ solution (e). The ^{13}C chemical shift values of [2]ferrocenophane in $CDCl_3$ are found to be $91.2(C_1)$, $72.2(C_{2.5})$, 67.9(C_{3.4}), and 33.7(CH₂CH₂) ppm. The assignment of the carbon signals was carried out by using the same method as in the case of biferrocene based on the results of [n]ferrocenophane (n = 1,2) derivatives. 14) Although relatively sharp signals are found for the [2]ferrocenophane, broader signals are found for the HgX_2 adducts in solid. The ¹³C chemical shift values of [2]ferrocenophane and its -3HgCl2 adduct in solid are found to be $92.56(C_1)$, $74.95(C_{2.5})$, $70.76(C_{3.4})$, $35.25(CH_2CH_2)$ ppm and 114.16 (C_1) , $78.55(C_{2,5} \text{ and } C_{3,4})$, $35.05(CH_2CH_2)$ ppm, respectively. The low-field shift values of $C_{2.5}$ and $C_{3.4}$ for the $HgCl_2$ adduct are almost the same as that of HgCl₂ adducts with ferrocene and biferrocene. The most striking feature is the low-field shift value of the C_1 signal in the adduct, which is found in a lower field by about 21.60 ppm compared with the C₁ signal of the original metallocene. The same large low-field shift of C_1 signal is also observed for other [2]ferrocenophane-2.5HgBr2 and -2.2HgI2 adducts.

The Q. S. values of the adducts (3.08 for the HgBr_2 and 3.12 mm s⁻¹ for the HgI_2 adducts, both at 78 K) are a little smaller than that of the HgCl_2 adduct but much larger than that of the [2]ferrocenophane. The ¹³C chemical shift values of the adducts are found to be 119.61(C₁), 83.02(C_{2,5}), 77.18 (C_{3,4}), 35.58(CH₂CH₂) ppm for the HgBr_2 and 116.69(C₁), 81.75(C_{2,5} and C_{3,4}), and 36.29 (CH₂CH₂) ppm, for the HgI_2 adduct.

Fig. 2. 13 C-CP-MAS spectra of [2]ferrocenophane (a) and its $^{-3}$ HgCl $_2$ (b), $^{-2.5}$ HgBr $_2$ (c), $^{-2.2}$ HgI $_2$ (d) adducts together with 13 C-NMR spectrum of [2]-ferrocenophane in CDCl $_3$ solution (e).

1984 Chemistry Letters, 1987

For the sake of comparison of these data, we have treated diferrocenylethane with HgCl2 in the same conditions as in the case of ferrocene-7HgCl2. An unstable orange-yellow adduct was obtained and analyzed as diferrocenylethane-6HgCl2. The Q. S. values of the HgCl2 adduct is found to be 3.00 mm s^{-1} at 78 K, indicating direct chemical bond formation between the Fe and Hg atoms. 13C chemical shift values of diferrocenylethane and its $-6 \, \mathrm{HgCl}_2$ adduct are found to be $90.12(C_1)$, $70.00(C_5H_5, C_{2.5}$, and $C_{3,4}$), 36.61(CH_2CH_2) ppm, and 91.88(C_1), 78.35 (C_5H_5) , and 31.74(CH_2CH_2) ppm, respectively, as shown in Fig. 3. The other signals of the $C_{2.5}$ and $C_{3.4}$ for the diferrocenylethane-6HgCl₂ are hidden in the main C₅H₅-ring signal. Although the low-field shift value (8.35 ppm) of C5H5-ring carbon of the diferrocenylethane-6HgCl₂ adduct is similar to that of the HgCl₂ adducts of ferrocene and biferrocene, the value of C_1 (1.76 ppm) is much smaller than that of

the [2]ferrocenophane-3HgCl $_2$ adduct (21.60 ppm). From the results obtained in the present study, it is concluded that anomalously large

Fig. 3. 13 C-CP-MAS spectra of diferrocenylethane (a) and its $_{-6}$ HgCl₂ adduct (b).

low-field shifts of the C_1 atoms for the [2]ferrocenophane-HgX $_2$ adducts suggest the structural distortion at the C_1 atoms caused by the stable Fe-Hg bond formation.

References

- 1) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1009.
- 2) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., <u>56</u>, 3291(1983).
- 3) H. Sano, M. Watanabe, and I. Motoyama, Hyperfine Interactions, 28, 833(1986).
- 4) M. Watanabe, K. Sato, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1775.
- 5) S. R. Hartman and E. L. Hahn, Phys. Rev., <u>128</u>, 2042(1962).
- 6) A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., <u>59</u>, 569(1973).
- 7) J. Schaefer, S. H. Chin, and S. I. Weissman, Macromolecules, 5, 798(1972).
- 8) J. Schaefer, E. O. Stejskal, and R. Buckdahl, Macromolecules, 10, 384(1977).
- 9) W. H. Morrison, Jr. and D. N. Hendrickson, Inorg. Chem., 11, 2912(1972).
- 10) M. Watanabe, K. Suto, I. Motoyama, and H. Sano, Chem. Lett., 1984, 1317.
- 11) M. Watanabe. Y. Masuda, I. Motoyama, and H. Sano, Chem. Lett., in press.
- 12) R. M. G. Roberts, J. Silver, and I. E. G. Morrison, Organomet. Chem., <u>209</u>, 385 (1981).
- 13) A. I. Gusev and U. T. Struchkov, Zh. Struckt. Kim., 6, 1121(1972).
- 14) A. G. Osborne, R. H. Whitely, and Meads, Organomet. Chem., <u>193</u>, 345(1980);
 T. H. Barr and W. E. Watts, Tetrahedron, 24, <u>6111</u>(1968).

(Received August 3, 1987)